

Sample &

Buy

SCPS245B - DECEMBER 2012 - REVISED JUNE 2015

TCA9517A Level-Shifting I²C Bus Repeater

Technical

Documents

Features 1

- **Two-Channel Bidirectional Buffer**
- I²C Bus and SMBus Compatible
- Operating Supply Voltage Range of 0.9 V to 5.5 V on A-side
- Operating Supply Voltage Range of 2.7 V to 5.5 V on B-side
- Voltage-Level Translation From 0.9 V 5.5 V to 2.7 V - 5.5 V
- Footprint and Functional Replacement for • PCA9515B
- Active-High Repeater-Enable Input
- Open-Drain I²C I/O
- 5.5-V Tolerant I²C and Enable Input Support Mixed-Mode Signal Operation
- Accommodates Standard Mode and Fast Mode I²C Devices and Multiple Masters
- High-Impedance I²C Pins When Powered-Off
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 5500 V Human-Body Model (A114-A)
 - 200 V Machine Model (A115-A)
 - 1000 V Charged-Device Model (C101)

2 Applications

- Servers
- Routers (Telecom Switching Equipment)
- Industrial Equipment
- Products with Many I²C Slaves and/or Long PCB Traces

3 Description

Tools &

Software

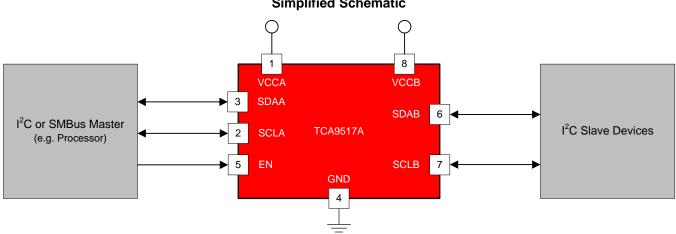
The TCA9517A is a bidirectional buffer with level shifting capabilities for I²C and SMBus systems. It provides bidirectional voltage-level translation (uptranslation/down-translation) between low voltages (down to 0.9 V) and higher voltages (2.7 V to 5.5 V) in mixed-mode applications. This device enables I²C and SMBus systems to be extended without degradation of performance, even during level shifting.

Support &

Community

20

The TCA9517A buffers both the serial data (SDA) and the serial clock (SCL) signals on the I²C bus, thus allowing two buses of up to 400-pF bus capacitance to be connected in an I²C application.


The TCA9517A has two types of drivers: A-side drivers and B-side drivers. All inputs and I/Os are over-voltage tolerant to 5.5 V, even when the device is unpowered (V_{CCB} and/or $V_{CCA} = 0$ V).

The TCA9517A offers a higher contention level threshold, V_{ILC}, than the TCA9517, which allows connections to slaves which have weaker pulldown ability.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
TCA9517A	VSSOP (8)	3.00 mm × 3.00 mm		

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

2

Table of Contents

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Revi	ision History 2
5	Des	cription (continued) 3
6	Pin	Configuration and Functions 4
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	ESD Ratings5
	7.3	Recommended Operating Conditions 5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics
	7.6	Timing Requirements 6
	7.7	I ² C Interface Switching Characteristics
	7.8	Typical Characteristics 8
8	Para	meter Measurement Information
9	Deta	iled Description 10

	9.1	Overview	10
	9.2	Functional Block Diagram	10
	9.3	Feature Description	11
	9.4	Device Functional Modes	11
10	Арр	lication and Implementation	12
	10.1	Application Information	12
	10.2	Typical Application	12
11	Pow	ver Supply Recommendations	15
12	Lay	out	16
	12.1	Layout Guidelines	16
	12.2	Layout Example	16
13	Dev	ice and Documentation Support	16
	13.1	Community Resource	16
	13.2	Trademarks	16
	13.3	Electrostatic Discharge Caution	17
	13.4	Glossary	17
14	Mec	hanical, Packaging, and Orderable	
	Info	rmation	17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (April 2013) to Revision B
--

•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	. 1
•	Removed Ordering Information table.	3

Changes from Original (December 2012) to Revision A

Texas Instruments

www.ti.com

Page

Page

5 Description (continued)

TCA9517A

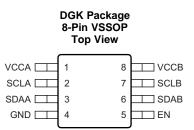
SCPS245B - DECEMBER 2012 - REVISED JUNE 2015

The type of buffer design on the B-side prevents it from being used in series with devices which use static voltage offset. This is because these devices do not recognize buffered low signals as a valid low and do not propagate it as a buffered low again.

The B-side drivers operate from 2.7 V to 5.5 V. The output low level for this internal buffer is approximately 0.5 V, but the input voltage must be 70 mV or more below the output low level when the output internally is driven low. The higher-voltage low signal is called a buffered low. When the B-side I/O is driven low internally, the low is not recognized as a low by the input. This feature prevents a lockup condition from occurring when the input low condition is released.

The A-side drivers operate from 0.9 V to 5.5 V and drive more current. They do not require the buffered low feature (or the static offset voltage). This means that a low signal on the B-side translates to a nearly 0 V low on the A-side, which accommodates smaller voltage swings of lower-voltage logic. The output pulldown on the A-side drives a hard low, and the input level is set at $0.3 \times V_{CCA}$ to accommodate the need for a lower low level in systems where the low-voltage-side supply voltage is as low as 0.9 V.

The A-side of two or more TCA9517As can be connected together, allowing many topographies (See Figure 8 and Figure 9), with the A-side as the common bus. Also, the A-side can be connected directly to any other buffer with static- or dynamic-offset voltage. Multiple TCA9517As can be connected in series, A-side to B-side, with no buildup in offset voltage and with only time-of-flight delays to consider. The TCA9517A cannot be connected B-side to B-side, because of the buffered low voltage from the B-side. The B-side cannot be connected to a device with rise time accelerators.


VCCA is only used to provide the $0.3 \times V_{CCA}$ reference to the A-side input comparators and for the power-gooddetect circuit. The TCA9517A logic and all I/Os are powered by the VCCB pin.

As with the standard I²C system, pullup resistors are required to provide the logic-high levels on the buffered bus. The TCA9517A has standard open-drain configuration of the I²C bus. The size of these pullup resistors depends on the system, but each side of the repeater must have a pullup resistor. The device is designed to work with Standard mode and Fast mode I²C devices in addition to SMBus devices. Standard mode I²C devices only specify 3 mA in a generic I²C system, where Standard mode devices and multiple masters are possible. Under certain conditions, higher termination currents can be used.

Texas Instruments

www.ti.com

6 Pin Configuration and Functions

Pin Functions

PIN		TYPE	DESCRIPTION				
NO.	NAME	TTPE	DESCRIPTION				
1	VCCA	Supply	A-side supply voltage (0.9 V to 5.5 V)				
2	SCLA	Input/Output	Serial clock bus, A-side. Connect to $V_{\mbox{\scriptsize CCA}}$ through a pull-up resistor. If unused, connect directly to ground.				
3	SDAA	Input/Output	rial data bus, A-side. Connect to V_{CCA} through a pull-up resistor. If unused, connect directly to pund.				
4	GND	Ground	Ground				
5	EN	Input	Active-high repeater enable input				
6	SDAB	Input/Output	Serial data bus, B-side. Connect to $V_{\mbox{\scriptsize CCB}}$ through a pull-up resistor. If unused, connect directly to ground.				
7	SCLB	Input/Output	Serial clock bus, B-side. Connect to $V_{\mbox{\scriptsize CCB}}$ through a pull-up resistor. If unused, connect directly to ground.				
8	VCCB	Supply	B-side and device supply voltage (2.7 V to 5.5 V)				

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

				MIN	MAX	UNIT
V _{CCB}	/ _{CCB} Supply voltage range			-0.5	7	V
V _{CCA}	/ _{CCA} Supply voltage range		-0.5	7	V	
VI	Enable input voltage range ⁽²⁾		-0.5	7	V	
V _{I/O}	I ² C bus voltage range ⁽²⁾		-0.5	7	V	
I _{IK}	Input clamp current	V ₁ < 0			-50	~ ^
I _{OK}	Output clamp current	V _O < 0			-50	mA
	Continuous output current				±50	mA
I _O	Continuous current through V _{CC} or GND				±100	mA
T _{stg}	Storage temperature range			-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±5500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{(2)}$	±1000	V
		Machine model (A115-A)	±200	

JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. (1)

(2)

7.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V _{CCA}	Supply voltage, A-side bus		0.9 ⁽¹⁾	5.5	V
V _{CCB}	Supply voltage, B-side bus		2.7	5.5	V
V _{IH}		SDAA, SCLA	$0.7 \times V_{CCA}$	5.5	
	High-level input voltage	SDAB, SCLB	$0.7 \times V_{CCB}$	5.5	V
		EN	0.7 × V _{CCB}	5.5	
		SDAA, SCLA		$0.3 \times V_{CCA}$	
VIL	Low-level input voltage	SDAB, SCLB ⁽²⁾		$0.3 \times V_{CCB}$	V
	EN			$0.3 \times V_{CCB}$	
I _{OL}	Low-level output current			6	mA
T _A	Operating free-air temperature		-40	85	°C

(1) Low-level supply voltage

 V_{IL} specification is for the first low level seen by the SDAB and SCLB lines. V_{ILc} is for the second and subsequent low levels seen by the SDAB and SCLB lines. See V_{ILC} and Pullup Resistor Sizing for V_{ILC} application information (2)

7.4 Thermal Information

		TCA9517A	
	THERMAL METRIC ⁽¹⁾	DGK (VSSOP)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	187.6	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	59.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	108.6	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	3.4	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	106.9	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application (1) report, SPRA953.

SCPS245B – DECEMBER 2012 – REVISED JUNE 2015

www.ti.com

STRUMENTS

EXAS

7.5 Electrical Characteristics

 V_{CCB} = 2.7 V to 5.5 V, GND = 0 V, T_A = -40°C to 85°C (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	V _{CCB}	MIN	TYP	MAX	UNIT
V _{IK}	Input clamp voltage		I _I = -18 mA	2.7 V to 5.5 V			-1.2	V
V _{OL}	Low-level output	SDAB, SCLB	$ I_{OL} = 100 \ \mu A \ or \ 6 \ m A, \\ V_{ILA} = V_{ILB} = 0 \ V $	2.7 V to 5.5 V	0.45	0.52	0.6	V
02	voltage	SDAA, SCLA	I _{OL} = 6 mA			0.1	0.2	
V _{OL} – V _{ILc}	Low-level input voltage below low-level output voltage	SDAB, SCLB	ensured by design	2.7 V to 5.5 V		70		mV
V _{ILC}	SDA and SCL low-level input voltage contention	SDAB, SCLB		2.7 V to 5.5 V		0.45		V
I _{CC}	Quiescent supply curren	t for V _{CCA}	Both channels low, SDAA = SCLA = GND and SDAB = SCLB = open, or SDAA = SCLA = open and SDAB = SCLB = GND				1	mA
			Both channels high, SDAA = SCLA = V_{CCA} and SDAB = SCLB = V_{CCB} and EN = V_{CCB}	V _{CCA} and 15		5		
I _{CC}	Quiescent supply current		Both channels low, SDAA = SCLA = GND and SDAB = SCLB = open	5.5 V		1.5	5	mA
			In contention, SDAA = SCLA = GND and SDAB = SCLB = GND			3	5	
			$V_{I} = V_{CCB}$				±1	
		SDAB, SCLB	V _I = 0.2 V				10	
		SDAA, SCLA	$V_{I} = V_{CCB}$	2.7 V to 5.5 V			±1	
I _I	Input leakage current	SDAA, SCLA	V _I = 0.2 V	2.7 V 10 5.5 V			10	μA
			$V_{I} = V_{CCB}$				±1	
		EN	V _I = 0.2 V			-10	-30	1
	High-level output	SDAB, SCLB		2.7 V to 5.5 V			10	
I _{OH}	leakage current	SDAA, SCLA	V _O = 3.6 V	2.7 V to 5.5 V			10	μA
		EN	V _I = 3 V or 0 V	3.3 V		6	10	pF
CI	Input capacitance		$V_{\rm r} = 2 V_{\rm or} 0 V_{\rm r}$	3.3 V		8	13	
		SCLA, SCLB	$V_I = 3 V \text{ or } 0 V$	0 V		7	11	
<u> </u>	Input/output	SDAA, SDAB	$V_1 = 3 V \text{ or } 0 V$	3.3 V		8	13	pF
C _{IO}	capacitance	SDAA, SDAD		0 V		7	11	μr

7.6 Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
t _{su}	Setup time, EN high before Start condition ⁽¹⁾	100		ns
t _h	Hold time, EN high after Stop condition ⁽¹⁾	100		ns

(1) EN should change state only when the global bus and the repeater port are in an idle state.

7.7 I²C Interface Switching Characteristics

 V_{CCB} = 2.7 V to 5.5 V, GND = 0 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾ (2)

	PARAMET	ER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP ⁽³⁾	МАХ	UNIT
to a Propagation delay			SDAB, SCLB ⁽⁴⁾ (see Figure 6)	SDAA, SCLA ⁽⁴⁾ (see Figure 6)		80	141	350	2
			SDAA, SCLA ⁽⁵⁾ (see Figure 5)	SDAB, SCLB ⁽⁵⁾ (see Figure 5)		25	74	110	ns
			SDAB, SCLB		V _{CCA} ≤ 2.7 V (see Figure 4)	30	76 ⁽⁶⁾	110	
t _{PZL}	Propagation dela	у	SDAB, SCLB	SDAA, SCLA	V _{CCA} ≥ 3 V (see Figure 4)	10	86	230	ns
				SDAB, SCLB ⁽⁵⁾ (see Figure 5)		60	107	230	<u> </u>
		B-side to A side	80%	20%	V _{CCA} ≤ 2.7 V (see Figure 5)	10	12	15	
t _{TLH}	Transition time				V _{CCA} ≥ 3 V (see Figure 5)	40	42	45	ns
		A side to B-side (see Figure 4)				110	125	140	
		B-side to A side			V _{CCA} ≤ 2.7 V (see Figure 5)	1	52 ⁽⁶⁾	105	
t _{THL}	Transition time		80%	20%	V _{CCA} ≥ 3 V (see Figure 5)	20	67	175	ns
		A side to B-side (see Figure 4)				30	48	90	

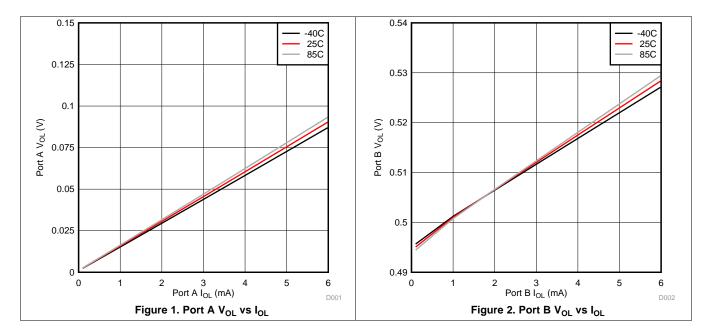
(1) Times are specified with loads of 1.35-kΩ pull-up resistance and 50-pF load capacitance on the B-side and 167-Ω pull-up and 57-pF load capacitance on the A side. Different load resistance and capacitance alter the RC time constant, thereby changing the propagation delay and transition times.

(2)

(3)

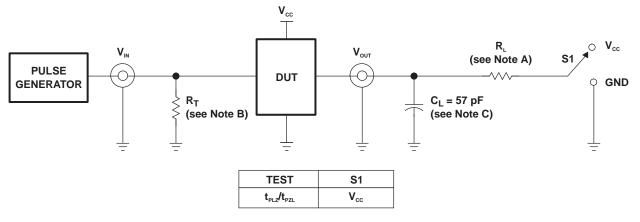
pull-up voltages are V_{CCA} on the A side and V_{CCB} on the B-side. Typical values were measured with $V_{CCA} = V_{CCB} = 3.3 \text{ V}$ at $T_A = 25^{\circ}$ C, unless otherwise noted. The t_{PLH} delay data from B to A side is measured at 0.4 V on the B-side to 0.5 V_{CCA} on the A side when V_{CCA} is less than 2 V, and 1.5 V on the A side if V_{CCA} is greater than 2 V. (4)

The proportional delay data from A to B-side is measured at 0.3 V_{CCA} on the A side to 1.5 V on the B-side. (5)

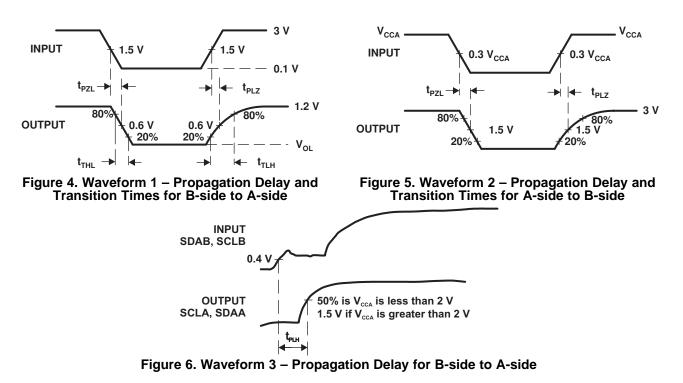

(6) Typical value measured with $V_{CCA} = 2.7$ V at $T_A = 25^{\circ}C$

TEXAS INSTRUMENTS

www.ti.com


7.8 Typical Characteristics

 $V_{\rm CCA}$ = 0.9 V, $V_{\rm CCB}$ = 2.7 V


8 Parameter Measurement Information

TEST CIRCUIT FOR OPEN-DRAIN OUTPUT

- A. $R_L = 167 \Omega (0.9 \text{ V to } 2.7 \text{ V})$ and $R_L = 450 \Omega (3.0 \text{ V to } 5.5 \text{ V})$ on the A side and 1.35 k Ω on the B-side
- B. R_T termination resistance should be equal to Z_{OUT} of pulse generators.
- C. C_L includes probe and jig capacitance.
- D. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- E. The outputs are measured one at a time, with one transition per measurement.
- $\mathsf{F}. \quad t_{\mathsf{PLH}} \text{ and } t_{\mathsf{PHL}} \text{ are the same as } t_{\mathsf{pd}}.$
- $G. \quad t_{PLZ} \text{ and } t_{PHZ} \text{ are the same as } t_{dis}.$
- $\label{eq:H.transform} H. \quad t_{PZL} \text{ and } t_{PZH} \text{ are the same as } t_{en}.$

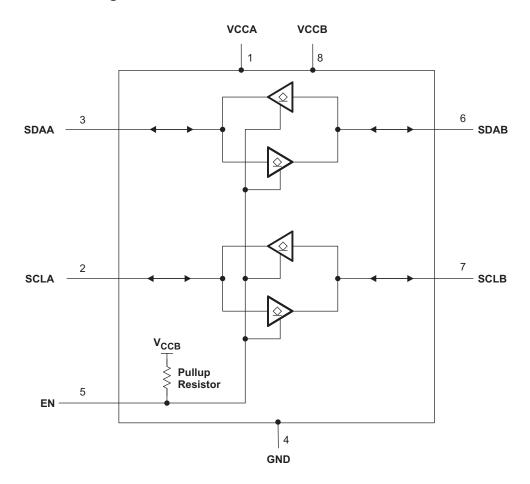
Figure 3. Test Circuit

TEXAS INSTRUMENTS

www.ti.com

9 Detailed Description

9.1 Overview


The TCA9517A is a bidirectional buffer with level shifting capabilities for I²C and SMBus systems. It provides bidirectional voltage-level translation (up-translation/down-translation) between low voltages (down to 0.9 V) and higher voltages (2.7 V to 5.5 V) in mixed-mode applications. This device enables I²C and SMBus systems to be extended without degradation of performance, even during level shifting.

The TCA9517A buffers both the serial data (SDA) and the serial clock (SCL) signals on the I²C bus, thus allowing two buses of up to 400-pF bus capacitance to be connected in an I²C application.

The TCA9517A has two types of drivers: A-side drivers and B-side drivers. All inputs and I/Os are over-voltage tolerant to 5.5 V, even when the device is unpowered (V_{CCB} and/or $V_{CCA} = 0$ V).

The TCA9517A offers a higher contention level threshold, V_{ILC} , than the TCA9517, which allows connections to slaves which have weaker pull-down ability.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Two-Channel Bidirectional Buffer

The TCA9517A is a two-channel bidirectional buffer with level-shifting capabilities

9.3.2 Active-High Repeater-Enable Input

The TCA9517A has an active-high enable (EN) input with an internal pull-up to V_{CCB} , which allows the user to select when the repeater is active. This can be used to isolate a badly behaved slave on power-up reset. The EN input should change state only when the global bus and repeater port are in an idle state, to prevent system failures.

9.3.3 V_{OL} B-Side Offset Voltage

The B-side drivers operate from 2.7 V to 5.5 V. The output low level for this internal buffer is approximately 0.5 V, but the input voltage must be 70 mV or more below the output low level when the output internally is driven low. The higher-voltage low signal is called a buffered low. When the B-side I/O is driven low internally, the low is not recognized as a low by the input. This feature prevents a lockup condition from occurring when the input low condition is released. This type of design prevents 2 B-side ports from being connected to each other.

9.3.4 Standard Mode and Fast Mode Support

The TCA9517A supports standard mode as well as fast mode l^2C . The maximum system operating frequency will depend on system design and the delays added by the repeater.

9.3.5 Clock Stretching Support

The TCA9517A can support clock stretching, but care needs to be taken to minimize the overshoot voltage presented during the hand-off between the slave and master. This is best done by increasing the pull-up resistor value.

9.4 Device Functional Modes

INPUT EN	FUNCTION				
L	Outputs disabled				
Н	SDAA = SDAB SCLA = SCLB				

Table 1. Function Table

TEXAS INSTRUMENTS

www.ti.com

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

A typical application is shown in Figure 7. In this example, the system master is running on a 3.3 V I^2C bus, and the slave is connected to a 1.2 V I^2C bus. Both buses run at 400 kHz. Master devices can be placed on either bus.

The TCA9517A is 5-V tolerant, so it does not require any additional circuitry to translate between 0.9 V to 5.5 V bus voltages and 2.7 V to 5.5 V bus voltages.

When the A side of the TCA9517A is pulled low by a driver on the I^2C bus, a comparator detects the falling edge when it goes below $0.3 \times V_{CCA}$ and causes the internal driver on the B-side to turn on, causing the B-side to pull down to about 0.5 V. When the B-side of the TCA9517A falls, first a CMOS hysteresis-type input detects the falling edge and causes the internal driver on the A side to turn on and pull the A-side pin down to ground. In order to illustrate what would be seen in a typical application, refer to Figure 9 and Figure 10. If the bus master in Figure 7 were to write to the slave through the TCA9517A, waveforms shown in Figure 9 would be observed on the A bus. This looks like a normal I^2C transmission, except that the high level may be as low as 0.9 V, and the turn on and turn off of the acknowledge signals are slightly delayed.

On the B-side bus of the TCA9517A, the clock and data lines would have a positive offset from ground equal to the V_{OL} of the TCA9517A. After the eighth clock pulse, the data line is pulled to the V_{OL} of the slave device, which is very close to ground in this example. At the end of the acknowledge, the level rises only to the low level set by the driver in the TCA9517A for a short delay, while the A-bus side rises above 0.3 × V_{CCA} and then continues high.

10.2 Typical Application

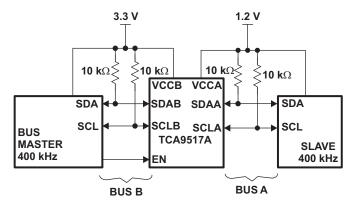


Figure 7. Typical Application Schematic

10.2.1 Design Requirements

For the level translating application, the following should be true:

- $V_{CCA} = 0.9 \text{ V to } 5.5 \text{ V}$
- V_{CCB} = 2.7 to 5.5 V
- V_{CCA} < V_{CCB}
- B-side ports must not be connected together

Typical Application (continued)

10.2.2 Detailed Design Procedure

10.2.2.1 Clock Stretching Support

The TCA9517A can support clock stretching, but care needs to be taken to minimize the overshoot voltage presented during the hand-off between the slave and master. This is best done by increasing the pull-up resistor value.

10.2.2.2 V_{ILC} and Pullup Resistor Sizing

For the TCA9517A to function correctly, all devices on the B-side must be able to pull the B-side below the voltage input low contention level (V_{ILC}). This means that the V_{OL} of any device on the B-side must be below 0.45 V.

 V_{OL} of a device can be adjusted by changing the I_{OL} through the device which is set by the pull-up resistance value. The pull-up resistance on the B-side must be carefully selected to ensure that logic levels will be transferred correctly to the A-side.

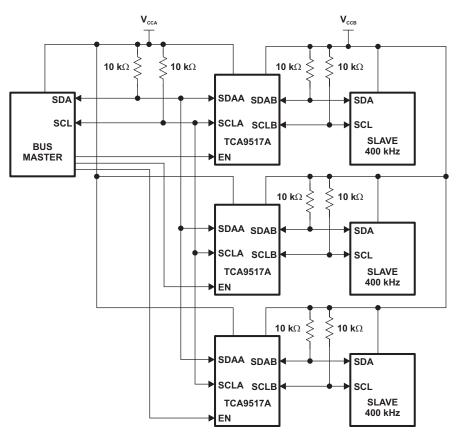
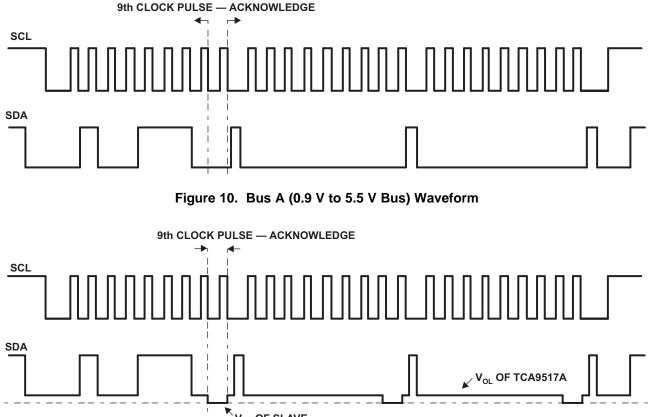


Figure 8. Typical Star Application


Multiple A sides of TCA9517As can be connected in a star configuration, allowing all nodes to communicate with each other.

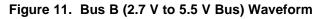
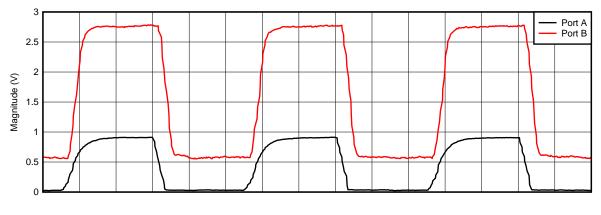

Typical Application (continued)

Figure 9. Typical Series Application

To further extend the I²C bus for long traces/cables, multiple TCA9517As can be connected in series as long as the A-side is connected to the B-side. I²C bus slave devices can be connected to any of the bus segments. The number of devices that can be connected in series is limited by repeater delay/time-of-flight considerations on the maximum bus speed requirements.



Typical Application (continued)

D003

Figure 12. Voltage Translation at 400 kHz, $V_{CCA} = 0.9 V$, $V_{CCB} = 2.7 V$

11 Power Supply Recommendations

 V_{CCB} and V_{CCA} can be applied in any sequence at power up. The TCA9517A includes a power-up circuit that keeps the output drivers turned off until V_{CCB} is above 2.5 V and the V_{CCA} is above 0.8 V. After power up and with the EN high, a low level on the A-side (below $0.3 \times V_{CCA}$) turns the corresponding B-side driver (either SDA or SCL) on and drives the B-side down to approximately 0.5 V. When the A-side rises above $0.3 \times V_{CCA}$, the B-side pull-down driver is turned off and the external pull-up resistor pulls the pin high. When the B-side falls first and goes below $0.3 \times V_{CCB}$, the A-side driver is turned on and the A-side pulls down to 0 V. The B-side pull-down is not enabled unless the B-side voltage goes below 0.4 V. If the B-side low voltage does not go below 0.5 V, the A-side driver turns off when the B-side voltage is above $0.7 \times V_{CCB}$. If the B-side low voltage goes below 0.4 V, the B-side pull-down driver is enabled, and the B-side is able to rise to only 0.5 V until the A-side rises above 0.3 $\times V_{CCA}$.

TI recommends using a decoupling capacitor and placing it close to the VCCA and VCCB pins of a value of about 100 nF.

TCA9517A SCPS245B – DECEMBER 2012–REVISED JUNE 2015

12 Layout

12.1 Layout Guidelines

There are no special layout procedures required for the TCA9517A.

It is recommended that the decoupling capacitors be placed as close to the VCC pins as possible.

12.2 Layout Example

Figure 13 shows an example layout of the DGK package.

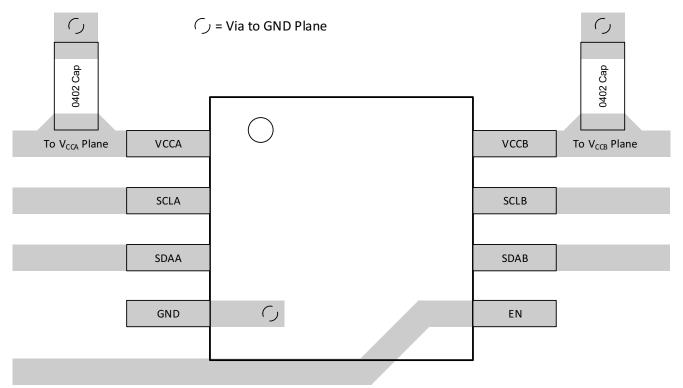


Figure 13. TCA9517A Layout Example

13 Device and Documentation Support

13.1 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.2 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

21-Feb-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TCA9517ADGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	BSK	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

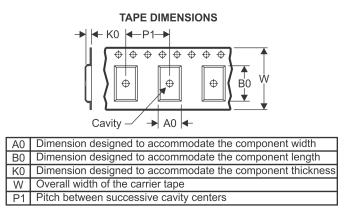
(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

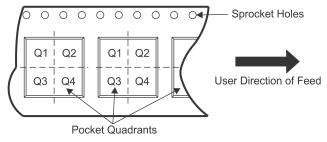
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

21-Feb-2015

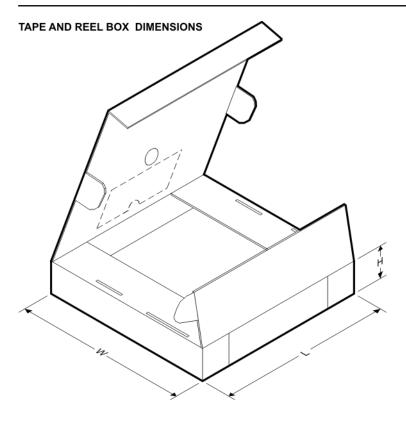

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

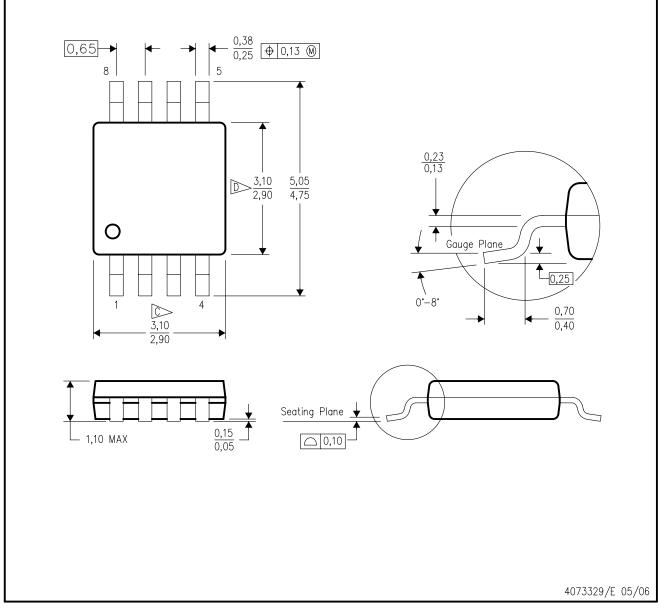

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TCA9517ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Feb-2015



*All dimensions are nominal

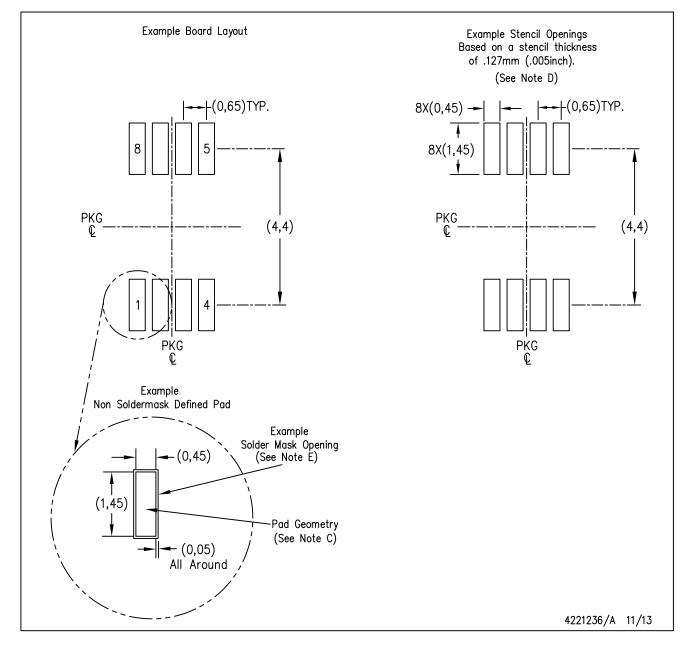
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TCA9517ADGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.

- D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated